Electric Fields Questions – OCR A Level Physics Praneel Physics

Praneel Physics

ol Philipsics

Phis

Praineel Physics

Praineel Philipsics .gth. (a 1. Define the electric field strength. (P)

Working and Answer:

Praineel Philis Electric field strength is the force per unit positive charge, E =

2. State the unit of electric field strength. (P)

Working and Answer:

The unit is volts per metre (V/m) or newtons per coulomb (N/C).

raineel Physics

neel Physics

3. What is meant by a radial electric field? (P)

Working and Answer:

A field that radiates from a point charge, decreasing with distance.

4. Give an example of	of where a uniform ele	ectric field is used in te	echnology. (P)
010.3	D.M.	010.3	D.D.
2)			
	27,6	3110	
Q To	Q T. Co.	Q T.O	Rich

Working and Answer:

Cathode ray tubes (CRT) or inkjet printers.

 ${f 5.}$ Explain the difference between uniform and non-uniform electric fields. ${f (PP)}$

Working and Answer:

Uniform fields have constant field strength and parallel field lines; non-uniform fields have varying strength and diverging/converging field lines.

		•
6.	. Describe the electric field pattern between two oppositely charged parallel plates. (PP)	19
		,)
6		
2		.0
Y		Y
		• .
	(6) (6) (6)	15
	Working and Answer:	73
	The field lines are straight, parallel, and equally spaced, indicating a uniform	
	electric field.	
7	. State and explain the direction of the electric field. (PP)	.0)
· · ·	. State that explain the direction of the electric field. (11)	Y
	onysics onysics onysics	
	15105	16
		3
	Elle Bille Bille Bille Bille	
		. (
7		.0
ainee		Y
	Working and Answer:	
	The direction of the field is the direction of the force on a positive test charge.	
	The direction of the field is the direction of the force on a positive test charge.	16
		1
		7 0

8. Describe the work done when moving a charge in a uniform electric field. (PP)

Working and Answer:

Work done W = qEd, where d is the distance moved in the direction of the field.

9. Calculate the electric field strength between two parallel plates 5.0 mm apart with a potential difference of 100 V. (PPP)

Working and Answer:

$$E = \frac{V}{d} = \frac{100}{5.0 \times 10^{-3}} = 2.0 \times 10^4 \,\text{V/m}$$

10. A charge of 2.0×10^{-6} C is placed in an electric field of strength 3.0×10^{4} V/m. Calculate the force. (PPP)

Working and Answer:

$$F = Eq = 3.0 \times 10^4 \times 2.0 \times 10^{-6} = 0.06 \,\mathrm{N}$$

11. A proton moves from a plate at 0 V to one at 500 V. Calculate the work done. (PPP)

 $Working\ and\ Answer:$

$$W = qV = 1.6 \times 10^{-19} \times 500 = 8.0 \times 10^{-17} \,\mathrm{J}$$

R. F. allieol. R. India

Praineel Philippines

Answer:
$$V = \frac{kQ}{r} = \frac{8.99 \times 10^9 \times 5.0 \times 10^{-6}}{0.2} = 2.25 \times 10^6 \text{V}$$

P. r. atheel.

13. Derive the expression for electric field due to a point charge. (PPPP)

Working and Answer:

From Coulomb's Law:

$$F = \frac{kQq}{r^2}, \quad E = \frac{F}{q} = \frac{kQ}{r^2}$$

14. Describe the motion of a charged particle entering a uniform electric field at right angles. (PPPP)

Working and Answer:

The particle undergoes uniform acceleration perpendicular to its initial velocity, resulting in a parabolic path.

15. Explain how electric potential varies with distance from a point charge. (PPPP)

Working and Answer:

Electric potential decreases with distance as:

$$V = \frac{kQ}{r}$$

16. Calculate the energy gained by a 3.0×10^{-6} C charge moving through a potential difference of 1200 V. (PPPP)

Working and Answer:

$$W = qV = 3.0 \times 10^{-6} \times 1200 = 3.6 \times 10^{-3} \,\mathrm{J}$$

raineel Philis 17. Two charges of $+4.0 \times 10^{-6}$ C and -4.0×10^{-6} C are separated by 0.10 m. Calculate the electric field at the midpoint. (PPPPP)raineel Pi raineel Ri

Working and Answer:

The fields add since they are in the same direction:

$$E = 2 \times \frac{kQ}{(0.05)^2} = 2 \times \frac{8.99 \times 10^9 \times 4.0 \times 10^{-6}}{0.0025} = 2.88 \times 10^7 \,\text{V/m}$$

P. r. atheol.

Praineel Philips

Physics

Praincel Philip

... one force between two charges of $6.0\times10^{-6}\,\mathrm{C}$ and $3.0\times10^{-6}\,\mathrm{C}$ separated by 0. m. (PPPP) Praineel Philis

aneel Physics

Praineel Physics

Working and Answer:
$$F = \frac{kQ_1Q_2}{r^2} = \frac{8.99 \times 10^9 \times 6.0 \times 10^{-6} \times 3.0 \times 10^{-6}}{0.15^2} = 7.2\,\mathrm{N}$$

Praineel Philipsics

raineel Pinis 19. Calculate the work done in bringing a 1.5×10^{-6} C charge from infinity to a point 0.30 m raineel Pi away from a 5.0×10^{-6} C charge. (PPPP) raineel Ri Praineel P

Praineel Philips

Working and Answer:
$$V = \frac{kQ}{r} = \frac{8.99 \times 10^9 \times 5.0 \times 10^{-6}}{0.3} = 1.5 \times 10^5 \, \text{V}$$

$$W = qV = 1.5 \times 10^{-6} \times 1.5 \times 10^5 = 0.225 \, \text{J}$$

R. F. O.D.

Praincel Philips

Phis

P. P. Allie

Physics

Praineel Philipsiles

raineel Pinis arge **20.** A charged particle with mass 1.0×10^{-3} kg and charge 2.0×10^{-6} C is accelerated through raineel Pi 3000 V. Find its final speed. (PPPP)

Praineel Philip

rking and Answer:
$$W = qV = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{\frac{2qV}{m}} = \sqrt{\frac{2 \times 2.0 \times 10^{-6} \times 3000}{1.0 \times 10^{-3}}} = 3.46 \, \text{m/s}$$

Praineel Philips

Praineel Philip

Physics

Praincel Philips